PARTE DÉCIMOCTAVA

UNIDADES DE MEDIDA PARA LAS OPERACIONES AÉREAS Y TERRESTRES DE LAS AERONAVES

TABLA DE CONTENIDO

\triangle A DITI II \triangle	
CAPITUI ()	I DEFINICIONES

CAPITULO II APLICACION

CAPITULO III APLICACIÓN NORMALIZADA DE LAS UNIDADES DE MEDIDA

- 18.3.1. Unidades del Sistema Internacional (SI)
- 18.3.2. Unidades ajenas al sistema SI
- Tabla 3-1. Prefijos de las unidades SI
- 18.3.3. Aplicación de unidades específicas
- Tabla 3-2. Unidades ajenas al SI para uso permanente junto con el sistema SI
- Tabla 3-3. Otras unidades cuyo uso se permite con carácter opcional junto con las unidades SI
- Tabla 3-4 Aplicación normal de las unidades específicas de medida
- 18.3.4. Expresión de la unidad empleada

CAPITULO IV USO DE LAS UNIDADES OPCIONALES AJENAS AL SISTEMA INTERNACIONAL

- APÉNDICE A (RESERVADO)
- **APÉNDICE B (RESERVADO)**
- APÉNDICE C FACTORES DE CONVERSION
- APENDICE D TIEMPO UNIVERSAL COORDINADO

APENDICE E PRESENTACIÓN DE LA FECHA Y LA HORA EN FORMA EXCLUSIVAMENTE NUMÉRICA

1. Introducción

- 2. Presentación de la fecha
- 3. Presentación de la hora
- 4. Grupos de fecha y hora combinados

PARTE DÉCIMOCTAVA

La presente Parte DécimOctava fue adoptada mediante Resolución N° 01313 del 26 de MARZO de 2007, Publicada en el Diario Oficial Número 46.586 del 30 de Marzo de 2007, se incorpora a los Reglamentos Aeronáuticos de Colombia conforme al artículo Primero.

UNIDADES DE MEDIDA PARA LAS OPERACIONES AÉREAS Y TERRESTRES DE LAS AERONAVES

CAPÍTULO I DEFINICIONES

18.1. Cuando se utilicen los términos siguientes en las normas y métodos recomendados relativos a las unidades de medida que han de emplearse en todos los aspectos de las operaciones aéreas y terrestres de la aviación civil internacional, los mismos tendrán los significados que se expresan a continuación:

Actuación humana. Capacidades y limitaciones humanas que repercuten en la seguridad y eficiencia de las operaciones aeronáuticas.

Amperio (A). El amperio es la corriente eléctrica constante que, mantenida en dos conductores paralelos, rectilíneos de longitud infinita, de sección circular despreciable y ubicados a una distancia de 1 metro entre sí, en el vacío, produce entre estos dos conductores una fuerza igual a 2 x 10-7 newtons por metro de longitud.

Becquerel (Bq). La actividad de un radionúclido que sufre una transición nuclear espontánea por segundo.

Candela (cd). Es la intensidad luminosa, en dirección perpendicular, de una superficie de 1/600 000 metro cuadrado de un cuerpo negro, a la temperatura de solidificación del platino, a la presión de 101 325 newtons por metro cuadrado.

Culombio (C). La cantidad de electricidad transportada en 1 segundo por una corriente de 1 amperio.

Estereorradián (sr). Ángulo sólido que tiene su vértice en el centro de una esfera y que corta sobre la superficie de la esfera un área igual a la de un cuadrado cuyos lados tienen una longitud igual al radio de la esfera.

Faradio (F). Capacidad de un condensador entre cuyas placas aparece una diferencia de potencia de 1 voltio cuando está cargado con una cantidad de electricidad igual a 1 culombio.

Grado Celsius (°C). Nombre especial con que se designa la unidad kelvin para utilizarla en la expresión de valores de temperatura Celsius.

Gray (Gy). La energía entregada por radiación ionizante a una masa de materia correspondiente a 1 julio por kilogramo.

Henrio (H). La inductancia de un circuito cerrado en el cual se produce una fuerza electromotriz de 1 voltio cuando la corriente eléctrica en el circuito varía uniformemente con una cadencia de 1 amperio por segundo.

Hertzio (Hz). Frecuencia de un ciclo por segundo.

Julio (J). Trabajo realizado cuando el punto de aplicación de una fuerza de 1 newton se desplaza una distancia de 1 metro en la dirección de la fuerza.

Kelvin (K). Unidad de temperatura termodinámica, que es la fracción 1/273,16 de la temperatura termodinámica del punto triple del agua.

Kilogramo (kg). Unidad de masa; es igual a la masa del prototipo internacional del kilogramo.

Litro (L). Unidad de volumen para medir líquidos y gases, que es igual a 1 decímetro cúbico.

Lumen (Im). Flujo luminoso emitido en un ángulo sólido de un estereorradián por una fuente puntual que posee una intensidad uniforme de 1 candela.

Lux (lx). Iluminación producida por un flujo luminoso de 1 lumen distribuido uniformemente sobre una superficie de 1 metro cuadrado.

Metro (m). Distancia que la luz recorre en el vacío en 1/299 792 458 de segundo.

Milla marina (NM). La longitud exactamente igual a 1 852 metros.

Mol (mol). Cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos existen en 0,012 kg de carbono-12. Cuando se emplea el mol, deben especificarse las entidades elementales, que pueden ser átomos, moléculas, iones, electrones, otras partículas o grupos especificados de tales partículas.

Newton (N). Fuerza que, aplicada a un cuerpo que posee una masa de 1 kilogramo produce una aceleración de 1 metro por segundo al cuadrado.

Nudo (kt). La velocidad igual a 1 milla marina por hora.

Ohmio (:). Resistencia eléctrica entre dos puntos de un conductor cuando una diferencia de potencial de 1 voltio, aplicada entre estos dos puntos, produce en ese conductor una corriente de 1 amperio, no siendo el conductor fuente de fuerza electromotriz alguna.

Pascal (Pa). Presión o tensión de 1 newton por metro cuadrado.

Pie (ft). La longitud exactamente igual a 0,304 8 metros.

Radián (rad). Ángulo plano entre dos radios de un círculo que corta, sobre la circunferencia, un arco de longitud igual al radio.

Segundo (tiempo) (s). Duración de 9 192 631 770 períodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del átomo del cesio-133 en estado normal.

Siemens (S). Conductancia eléctrica de un conductor en el cual se produce una corriente de 1 amperio por una diferencia de potencial eléctrico de 1 voltio.

CAPITULO II APLICACION

18.2. Esta Parte contiene disposiciones para la utilización de un sistema normalizado de unidades de medida en las operaciones aéreas y terrestres de la aviación civil, basado en el Sistema Internacional de Unidades (SI) y en ciertas unidades que no pertenecen a ese sistema pero cuyo uso se considera necesario para satisfacer las necesidades especiales de la aviación civil.

Las normas contenidas en esta Parte serán aplicables en todos los aspectos de las operaciones aéreas y terrestres de la aviación civil internacional.

CAPITULO III APLICACIÓN NORMALIZADA DE LAS UNIDADES DE MEDIDA

18.3.1. Unidades del Sistema Internacional (SI)

18.3.1.1. El Sistema Internacional de Unidades –SI, preparado y actualizado por la Conferencia General de Pesas y Medidas (CGPM), se utilizará, en Colombia, como sistema normal de unidades de medida en todos los aspectos de las operaciones aéreas y terrestres de la aviación civil.

18.3.1.2. Prefijos.

Se utilizarán los prefijos y símbolos que figuran en la Tabla 3-1 para componer los nombres y los símbolos de los múltiplos y submúltiplos decimales de las unidades SI.

El término "unidades SI", tal como se emplea aquí, comprende tanto las unidades básicas como las derivadas, y asimismo sus múltiplos y submúltiplos.

18.3.2. Unidades ajenas al sistema SI

18.3.2.1. Unidades ajenas al SI para uso permanente junto con el sistema SI.

Las unidades ajenas al sistema SI que figuran en la Tabla 3-2, se utilizarán bien sea en lugar de las unidades SI o como alternativa de ellas, en calidad de unidades primarias de medición, aunque únicamente como se especifica en la Tabla 3-4.

18.3.2.2. Otras unidades permitidas temporalmente con carácter opcional junto con el sistema SI

Se permitirá el uso temporal de las unidades de medida que no pertenecen al sistema SI que figuran en la Tabla 3-3, únicamente para las magnitudes que figuran en la Tabla 3-4.

Tabla 3-1. Prefijos de las unidades SI

Factor por el que debe multiplicarse la unidad	Prefijo	Símbolo
$1\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ =\ 10^{18}$ $1\ 000\ 000\ 000\ 000\ 000\ 000\ =\ 10^{15}$	exa	E
$1\ 000\ 000\ 000\ 000\ =\ 10^{12}$	peta tera	P T
$1\ 000\ 000\ 000\ =\ 10^9$	giga	G
$1\ 000\ 000 = 10^{6}$ $1\ 000 = 10^{3}$	mega kilo	M k
$100 = 10^2$	hecto	h
$10 = 10^{1}$ $0.1 = 10^{-1}$	deca deci	da d
$0.01 = 10^{-2}$	centi	c
$0,001 = 10^{-3}$	mili	m
$0,000\ 001 = 10^{-6}$ $0,000\ 000\ 001 = 10^{-9}$	micro nan o	μ n
$0,000\ 000\ 000\ 001\ =\ 10^{-12}$	pico	p
$0,000\ 000\ 000\ 000\ 001 = 10^{-15}$ $0,000\ 000\ 000\ 000\ 000\ 001 = 10^{-18}$	femto	f a

18.3.3. Aplicación de unidades específicas

18.3.3.1. La aplicación de unidades de medida para ciertas magnitudes que se utilizan en las operaciones aéreas y terrestres de la aviación civil internacional, estarán de acuerdo con la Tabla 3-4.

18.3.3.2. Con el fin de facilitar las operaciones en ambientes en los que se utilicen unidades de medida específicas normalizadas y otras ajenas al SI, o en la transición entre ambientes que utilicen diferentes unidades; toda magnitud expresada en unidades ajenas al SI en los presentes Reglamentos Aeronáuticos, y en todo documento escrito con fines aeronáuticos, irá seguida de su correspondiente conversión al SI (entre paréntesis), según sea aplicable.

Nota: Las Unidades ajenas al SI, se emplearán con el fin de evitar posibles confusiones, solo en aquellos casos en que su uso sea más común y generalizado internacionalmente, en las operaciones aéreas y terrestres de las aeronaves, como sucede con el Nudo, como unidad de velocidad, la Milla Marina como unidad de distancia, y el Pié como unidad para altitud, entre otras (ver tablas 3-2, 3-3 y 3-4).

Tabla 3-2. Unidades ajenas al SI para uso permanente junto con el sistema SI

Magnitudes específicas de la Tabla 3-4 relativas a	Unidad	Símbolo	Definición (en términos de las unidades SI)	
ángulo plano	grado	0	1° = (π/180) rad	
	minuto		$1' = (1/60)^{\circ} = (\pi/10 \ 800)$ rad	
	segundo		$1'' = (1/60)' = (\pi/648\ 000)$ rad	
masa	tonelada métrica	t	$1 t = 10^3 kg$	
temperatura	grado Celsius	°C	1 unidad °C = 1 unidad K ^{a)}	
tiempo	minuto	min	1 min = 60 s	
	hora	h	1 h = 60 min = 3 600 s	
	día	d	1 d = 24 h = 86 400 s	
	semana, mes, año	_		
volumen	litro	L	$1 L = 1 dm^3 = 10^{-3} m^3$	
a) Para la conversión, véase la Tabla C-2 en el Adjunto C.				

Tabla 3-3. Otras unidades cuyo uso se permite con carácter opcional junto con las unidades SI

Magnitudes específicas de la Tabla 3-4 relativas a	Unidad	Simbolo	Definición (en términos de las unidades SI)
distancia (longitudinal)	milla marina	NM	1 NM = 1 852 m
distancia (vertical)a)	pie	ft	1 ft = 0.304 8 m
velocidad	nudo	kt	1 kt = 0,514 444 m/s

Tabla 3-4 Aplicación normal de las unidades específicas de medida

1. Dirección/Espacio/Tiempo

Númen referei		Unidad primaria (símbolo)	Unidad opcional ajena al SI (símbolo)
1.1	altitud	m	ft
1.2	área	m ²	
1.3	distancia (larga) ^{a)}	km	NM
1.4	distancia (corta)	m	
1.5	elevación	m	ft
1.6	autonomía	h y min	
1.7	altura	m	ft
1.8	latitud	0 1 #	
1.9	longitud	m	
1.10	longitud geográfica	0 1 11	
1.11	ángulo plano (cuando sea necesario se utilizarán las subdivisiones decimales del grado)	0	
1.12	longitud de pista	m	
1.13	alcance visual en la pista	m	
1.14	capacidad de los depósitos (aeronave)b)	L	
1.15	tiempo	s	
	*	min	
		h	
		d	
		semana	
		mes	
		año	
1.16	visibilidad ^{c)}	km	
1.17	volumen	m ³	
1.18	dirección del viento (otras direcciones del viento que no sean para el aterrizaje y el despegue, se expresarán en grados verdaderos; las direcciones del viento para el aterrizaje y el despegue se expresarán en grados		
	magnéticos)	0	

2. Unidades relacionadas con masa

Número de referencia	Magnitud	Unidad primaria (simbolo)
2.1	densidad del aire	kg/m ³
2.2	densidad de área	kg/m ²
2.3	capacidad de carga	kg _
2.4	densidad de carga	kg/m ³
2.5	densidad (de masa)	kg/m ³
2.6	capacidad de combustible (gravimétrica)	kg
2.7	densidad de gas	kg/m ³
2.8	carga bruta o carga útil	kg
		t
2.9	elevación de masas	kg
2.10	densidad lineal	kg/m
2.11	densidad de líquidos	kg/m ³
2.12	masa	kg
2.13	momento de inercia	$kg \cdot m^2$
2.14	momento cinético	kg ⋅ m ² /s
2.15	cantidad de movimiento	kg ⋅ m/s

3. Unidades relacionadas con fuerza

Número de referencia	Magnitud	Unidad primaria (simbolo)
3.1	presión del aire (general)	kPa
3.2	reglaje del altímetro	hPa
3.3	presión atmosférica	hPa
3.4	momento de flexión	kN·m
3.5	fuerza	N
3.6	presión de suministro de combustible	kPa
3.7	presión hidráulica	kPa
3.8	módulo de elasticidad	MPa
3.9	presión	kPa
3.10	tensión (mecánica)	MPa
3.11	tensión superficial	mN/m
3.12	empuje	kN
3.13	momento estático	$N \cdot m$
3.14	vacío	Pa

4. Mecánica

Número de referencia	Magnitud	Unidad primaria (simbolo)	Unidad opcional ajena al SI (símbolo)
4.1	velocidad relativa ^{d)}	km/h	kt
4.2	aceleración angular	rad/s ²	
4.3	velocidad angular	rad/s	
4.4	energía o trabajo	J	
4.5	potencia equivalente en el árbol	kW	
4.6	frecuencia	Hz	
4.7	velocidad respecto al suelo	km/h	kt
4.8	impacto	J/m^2	
4.9	energía cinética absorbida por el freno	MJ	
4.10	aceleración lineal	m/s ²	
4.11	potencia	kW	
4.12	régimen de centrado	°/s	
4.13	potencia en el árbol	kW	
4.14	velocidad	m/s	
4.15	velocidad vertical	m/s	ft/mir
4.16	velocidad del viento	km/h	kt

5. Gasto

Número de referencia	Magnitud	Unidad primaria (símbolo)
5.1	aire del motor	kg/s
5.2	agua del motor	kg/h
5.3	consumo de combustible (específico) motores de émbolo turborreactores de árbol	kg/(kW·h) kg/(kW·h)
5.4	motores de reacción combustible	kg/(kN·h) kg/h
5.5	velocidad de llenado del depósito de combustible (gravimétrica)	kg/min
5.6	gas	kg/s
5.7	líquido (gravimétrico)	g/s
5.8	líquido (volumétrico)	Ľ/s
5.9	caudal másico	kg/s
5.10	consumo de aceite	
	turbina de gas motores de émbolo (específico)	kg/h g/(kW·h)
5.11	aceite	g/s
5.12	capacidad de la bomba	L/min
5.13	aire de ventilación	m ³ /min
5.14	viscosidad (dinámica)	Pa·s
5.15	viscosidad (cinemática)	m ² /s

6. Termodinámica

Número referen		Unidad primaria (símbolo)
		***** 2 ***
6.1	coeficiente de transmisión térmica	W/(m ² · K) J/m ²
6.2	flujo térmico por unidad de área	J/m ²
6.3	flujo térmico	W
6.4	humedad (absoluta)	g/kg
6.5	dilatación lineal	°C-I
6.6	cantidad de calor	J
6.7	temperatura	°C

7. Electricidad y magnetismo

Número de referencia	Magnitud	Unidad primaria (simbolo)
7.1	capacidad	F
7.2	conductancia	S
7.3	conductividad	S/m
7.4	densidad de corriente	A/m ²
7.5	corriente eléctrica	A
7.6	intensidad de campo eléctrico	C/m ²
7.7	tensión eléctrica	V
7.8	fuerza electromotriz	V
7.9	intensidad de campo magnético	A/m
7.10	flujo magnético	Wb
7.11	densidad de flujo magnético	T
7.12	potencia	W
7.13	cantidad de electricidad	C
7.14	resistencia	Ω

8. Luz y radiaciones electromagnéticas y afines

	nero de erencia	Magnitud	Unidad primaria (símbolo)
8.1	iluminancia		1x
8.2	luminancia		cd/m ²
8.3	emitancia luminosa		lm/m ²
8.4	flujo luminoso		lm
8.5	intensidad luminosa		cd
8.6	cantidad de luz		lm · s
8.7	energía radiante		J
8.8	longitud de onda		m

9. Acústica

Número de referencia	Magnitud	Unidad primaria (símbolo)
9.1	frecuencia	Hz
9.2	densidad de masa	kg/m ³
9.3	nivel de ruido	dB ^{e)}
9.4	duración de un período	s
9.5	intensidad acústica	W/m^2
9.6	potencia acústica	W
9.7	presión acústica	Pa
9.8	nivel de sonido	dBe)
9.9	presión estática (inst	Pa
9.10	velocidad del sonido	m/s
9.11	flujo de velocidad acústica (instantánea)	m^3/s
9.12	longitud de onda	m

10. Física nuclear y radiación de ionización

Número de		Unidad primaria
referencia	Magnitud	(símbolo)
10.1	dosis absorbida	Gy
10.2	régimen de absorción de dosis	Gy Gy/s
10.3	actividad de los radionúclidos	Bq
10.4	dosis equivalente	Sv
10.5	exposición a la radiación	C/kg
10.6	régimen de exposición	C/kg·s

- a) Tal como se usa en la navegación, generalmente más allá de los 4 000 m.
- b) Por ejemplo, combustible de la aeronave, líquido hidráulico, agua, aceite y recipientes de oxígeno de alta presión.
- c) La visibilidad inferior a 5 km puede indicarse en metros.
- d) En las operaciones de vuelo, la velocidad relativa se indica a veces (Generalmente en niveles superiores de vuelo) mediante el Número de Mach.
- e) El decibel (dB) es una relación que puede utilizarse como unidad para expresar el nivel de presión acústica y el nivel de potencia acústica. Cuando se utiliza, hay que especificar el nivel de referencia.

18.3.5. Expresión de la unidad empleada

Siempre que se expresen magnitudes en forma verbal o escrita se deberá indicarse caramente la unidad empleada.

CAPITULO IV

USO DE LAS UNIDADES OPCIONALES AJENAS AL SISTEMA INTERNACIONAL

Las unidades que no pertenecen al sistema SI y que figuran en la Tabla 3-3, habiendo sido conservadas temporalmente en el Anexo 5 al Convenio sobre Aviación civil Internacional, se conservan igualmente en los Reglamentos Aeronáuticos de Colombia, para utilizarlas como unidades opcionales, debido a su amplia difusión y para evitar posibles problemas de seguridad que podrían surgir, debido a la falta de coordinación internacional en cuanto a su uso. (Ver Nota subsiguiente a 18.3.3.2.).

18.4.1. En razón a que internacionalmente no se ha fijado una fecha para la terminación del uso del *Nudo*, como unidad de velocidad, de la *Milla Marina* como unidad de distancia, ni del *Pié* como unidad para altitud; en las operaciones aéreas y terrestres, tales unidades se seguirán empleando de modo que, sobre su eventual terminación se reglamentaría tan solo después de que exista una determinación internacional.

APÉNDICE A (RESERVADO)

APÉNDICE B (RESERVADO)

APÉNDICE C

FACTORES DE CONVERSION

1. Generalidades

1.1 La lista de factores de conversion que finura en este Adjunto se ha establecido para expresar los equivalentes de diferentes unidades de medicion como multiplos numericos de unidades SI.

1.2 Los factores de conversion se presentan de modo que sea facil adaptarlos para la presentacion visual de computadora y para la transmision de datos electronicos. Los factores se escriben como numero mayor que la unidad e inferior a 10, con seis decimales o menos. A continuacion del numero va la letra E (exponente), el signo mas o el signo menos y dos digitos que indican la potencia de 10 por la cual hay que multiplicar el numero con el fin de obtener el valor correcto. Por ejemplo:

3,523 907 E - 02 es 3,523 907 X 10⁻² 6 0,035 239 07

De un modo analogo,

3,386 389 E + 03 es 3,386 389 × 103 6 3 386,389

1.3 Un asterisco (*) colocado a continuación del sexto decimal indica que el factor de conversion es exacto y que todos los digitos siguientes son ceros. Si se indican menos de seis decimales, quiere decir que no se justifica una precision mayor. 1.4 Otros ejemplos del uso de las tablas:

```
Para convertir en Multipliquese por libra-fuerza por pie cuadrado Pa 4,788 026 E+01 pulgada m 2,540 000*E - 02 donde:

1 lbf/pie² = 47,880 26 Pa
1 pulgada = 0,025 4 m (exactamente)
```

2. Factores que no figuran en la lista

2.1 Los factores de conversion de unidades compuestas que no figuran en la Tabla pueden deducirse facilmente de los numeros indicados en la lista, mediante sustitucion de las unidades convertidas, del modo siguiente:

Ejemplo: Para hallar el factor de conversion de lb·pies/s a kg·m/s;

```
en primer lugar conviertase
1 libra en 0,453 592 4 kg
1 pie en 0,304 8 m

y despues sustituyase:
(0,453 592 4 kg) × (0,304 8 m)/s
= 0,138 255 kg: m/s
Siendo el factor 1,382 55 E - 01.
```

Tabla C-l. Factores de conversion a unidades SI (Los simbolos de las unidades SI se indican entre parentesis)

Para convertir	en	Multipliquese por
abamperio	amperio (A)	1,000 000*E+01
abculombio	culombio (C)	1,000 000*E + 01
abfaradio	faradio (F)	1,000 000*E + 09
abhenrio	henrio (H)	1,000 000*E - 09
abmho	siemens (S)	1,000 000*E + 09
abolimio	olunio (Ω)	1,000 000*E - 09
abvoltio	voltio (V)	1,000 000*E - 08
acre (Estados Unidos, agrimensura)	metro cuadrado (m ⁷)	4,046 873 E + 03
amperio hora	culombio (C)	3,600 000*E + 03
ano (calendario)	segundo (s)	3,153 600 E+07
ano (sidereo)	segundo (s)	3,155 815 E+07
ano (tropical)	segundo (s)	3,155 693 E+07
ano luz	metro (m)	9,460 55 E+15
area	metro cuadrado (m²)	1,000 000*E + 02
atmosfera (tecnologica) = 1 kgf/cm²)	pascal (Pa)	9,806 650*E + 04
atmosfera (tipo)	pascal (Pa)	1,013 250*E + 05

Unidad Administrativa Especial de Aeronáutica Civil Oficina de Transporte Aéreo - Grupo de Normas Aeronáuticas

^{*} Un asterisco (*) colocado a continuación del sexto decimal indica que el factor de conversión es exacto y que todos los dígitos siguientes son ceros. Si se indica menos de seis decimales, quiere decir que no se justifica una precisión mayor.

Para convertir	en	Multipliquese p
bar	pascal (Pa)	1,000 000*E+0
barril (de petroleo, 42 galones Estados Unidos,		
liquidos)	metro cubico (m³)	1,589 873 E-0
braza	metro (m)	1,828 8 E+0
Btu† (Tabla internacional)/h	vatio (W)	2,930 711 E-0
Btu (termoquímica)/h	vatio (W)	2,928 751 E-0
Btu (termoquímica)/min	vatio (W)	1,757 250 E+0
Btu (termoquímica)/s	vatio (W)	1,054 350 E+6
Btu (Tabla internacional)/h.pie²·°F (C, coeficiente de transmision termica)	vatio por metro cuadrado kelvin (W/m²·K)	5,678 263 E+0
Btu (termoquímica)/h.pie². °F (C, coeficiente de transmisión termica)	vatio por metro cuadrado kelvin (W/m²·K)	5,674 466 E+0
Btu (Tabla internacional)/s.pie ² .°F	vatio por metro cuadrado kelvin (W/m2·K)	2,044 175 E+0
Btu (termoquímica)/s.pie².°F	vatio por metro cuadrado kelvin (W/m²·K)	2,042 808 E+0
Btu (Tabla internacional)/pie ²	julio por metro cuadrado (J/m²)	1,135 653 E+0
Btu (termoquimica)/pie²	julio por metro cuadrado (J/m²)	1,134 893 E+0
Btu (termoquímica)/pie ² ·h	vatio por metro cuadrado (W/m²)	3,152 481 E+0
Btu (termoquímica)/pie²·min		1,891 489 E+(
Btu (termoquímica)/pie²·s	vatio por metro cuadrado (W/m²)	
	vatio por metro cuadrado (W/m²)	1,134 893 E+0
Btu (Tabla internacional). pie/h·pie². °F (k, conductividad termica) Btu (termoquimica) ·pie/h·pie². °F	vatio por metro kelvin (W/m·K)	1.730 735 E+0
(k, conductividad termica) Btu (Tabla internacional). pulg/h.pie². °F	vatio por metro kelvin (W/m·K)	1,729 577 E+0
(k, conductividad termica) Stu (termoquimica). pulg/h·pie². °F	vatio por metro kelvin (W/m·K)	1,442 279 E-0
(k, conductividad termica) Btu (Tabla internacional), pulg/s·pie². °F	vatio por metro kelvin (W/m·K)	1,441 314 E-0
(k, conductividad termica) Btu (termoquimica). pulg/s·pie². °F	vatio por metro kelvin (W/m·K)	5,192 204 E+0
(k, conductividad termica)	vatio por metro kelvin (W/m·K)	5,188 732 E+0
Btu (termoquímica)/pulg²·s	vatio por metro cuadrado (W/m²)	
		1,634 246 E+0
Btu (Tabla internacional)/lb	julio por kilogramo (J/kg)	2,326 000*E+0
Btu (termoquímica)/lb	julio por kilogramo (J/kg)	2,324 444 E+0
Btu (Tabla internacional)/lb.°F (c, capacidad termica)	julio por kilogramo kelvin (J/kg·K)	4,186 800*E+6
Btu (termoquímica)/lb.°F (c, capacidad termica)	iulia ner kilagrama kalvin (I/kg.W)	4,184 000*E+0
	julio por kilogramo kelvin (J/kg·K)	
oujia-pie 	lux (lx)	1,076 391 E+0
raballo de fuerza (550 pies·lbf/s)	vatio (W)	7,456 999 E+0
raballo de fuerza (electrico)	vatio (W)	7,460 000*E+0
aballo de fuerza (hidraulico)	vatio (W)	7,460 43 E+0
aballo de fuerza (metrico)	vatio (W)	7,354 99 E+0
aballo de fuerza (Reino Unido)	vatio (W)	7,457 0 E+0
raida libre (g), normal	metro por segundo al cuadrado (m/s²)	9,806 650*E+0
calibre (pulgada)	metro (m)	2,540 000*E-0
raliore (purgada) ral (termoquimica)/cm²	julio por metro cuadrado (J/m²)	
ral (termoquimica)/cm² ral (Tabla internacional)/g		4,184 000*E+0
ar (raota internacional)/g	julio por kilogramo (J/kg)	4,186 800*E+0
-1 (termogulmica)/a	julio por kilogramo (J/kg)	4,184 000*E+0
eal (termoquímica)/g		4 404 00045
al (Tabla internacional)/g.°C	julio por kilogramo kelvin (J/kg·K)	4,186 800*E+0
al (Tabla internacional)/g.°C al (termoquímica)/g.°C	julio por kilogramo kelvin (J/kg·K) julio por kilogramo kelvin (J/kg·K)	4,184 000*E+0
al (Tabla internacional)/g.°C	julio por kilogramo kelvin (J/kg·K)	

Para convertir	en	Multipliquese por
cal (termoquímica)/cm²·min	vatio por metro cuadrado (W/m²)	6,973 333 E+02
cal (termoquimica)/cm ² .8	vatio por metro cuadrado (W/m²)	4,184 000*E+04
eal (termoquímica)/cm.s·°C	vatio por metro kelvin (W/m·K)	4,184 000*E+02
caloria (Tabla internacional)	julio (J)	4,186 800*E+00
caloria (media)	julio (J)	4,190 02 E+00
caloria (termoquimica)	julio (J)	4,184 000*E+00
ealoria (15• <c)< td=""><td>julio (J)</td><td>4,185 80* E+00</td></c)<>	julio (J)	4,185 80* E+00
caloria (20•⟨C)	julio (J)	4,181 90* E+00
caloria (kilogramo, Tabla internacional)	julio (J)	4,186 800*E+03
caloria (kilogramo, media)	julio (J)	4,190 02 E+03
caloria (kilogramo, termoquimica)	julio (J)	4,184 000*E+03
centimetro de mercurio (0°C)	pascal (Pa)	1,333 22 E+03
centimetro de agua (4°C)	pascal (Pa)	9,806 38 E+01
centipoise	pascal segundo (Pa·s)	1,000 000*E-03
centistokes	metro cuadrado por segundo (m²/s)	1,000 000*E-06
clo	kelvin metro cuadrado por vatio (K·m²/W)	2,003 712 E-01
сора	metro cubico (m³)	2,365 882 E-04
euarto (Estados Unidos, aridos)	metro cubico (m³)	1,101 221 E-03
euarto (Estados Unidos, liquidos)	metro cubico (m³)	9,463 529 E-04
curie	becquerel (Bq)	3,700 000*E+10
dia (solar medio)	segundo (s)	8,640 000 E+04
dia (sidereo)	segundo (s)	8,616 409 E+04
dina	newton (N)	1,000 000*E-05
dina.cm	newton metro (N·m)	1,000 000*E - 07
dina/cm ²	pascal (Pa)	1,000 000*E-01
electronvoltio	julio (J)	1,602 19 E-19
EMU [unidad electromagnetica]		
de capacitancia	faradio (F)	1,000 000*E+09
EMU de corriente	amperio (A)	1,000 000°E+01
EMU de inductancia	henrio (H)	1,000 000*E-09
EMU de potencial electrico	voltio (V)	1,000 000*E-08
EMU de resistencia	ohmio (R)	1,000 000*E-09
ergio	julio (J)	1,000 000*E-07
ergio/cm ² .s	vatio por metro cuadrado (W/m²)	1,000 000*E-03
ergio/s	vatio (W)	1,000 000*E-07
escrupulo [24 granos]	kilogramo (kg)	1,555 174 E-03
estatoamperio	amperio (A)	3,335 640 E-10
estatoculombio	culombio (C)	3,335 640 E-10
estatofaradio	faradio (F)	1,112 650 E-12
estatohenrio	henrio (H)	8,987 554 E+11
estatohmio	ohmio (Ω)	8,987 554 E+11
estatomho	siemens (S)	1,112 650 E+12
estatovoltio	voltio (V)	2,997 925 E+02
estéreo	metro cubico (m³)	1,000 000°E+00
ESU [unidad electrostatica]	Samuel Co.	
de capacitancia	faradio (F)	1,112 650 E-12
ESU de corriente	amperio (A)	3,335 6 E-10
ESU de inductancia	henrio (H)	8,987 554 E+11
ESU de potencial electrico	voltio (V)	2,997 9 E+02
ESU de resistencia	ohmio (R)	8,987 554 E+11

Para convertir	en	Multipliquese po
faraday (a base del carbono 12)	culombio (C)	9,648 70 E+04
faraday (físico)	culombio (C)	9,652 19 E+04
faraday (quimico)	culombio (C)	9,649 57 E+04
fermi (femtometro)	metro (m)	1,000 000*E-15
fotio	lumen por metro cuadrado (lm/m²)	1,000 000°E+04
gal	metro por segundo al cuadrado (m/s²)	1,000 000*E-02
galon (Canada, liquidos)	metro cubico (m³)	4,546 090 E-03
galon (Reino Unido, liquidos)	metro cubico (m³)	4,546 092 E-03
galon (Estados Unidos, aridos)	metro cubico (m³)	4,404 884 E-03
galon (Estados Unidos, liquidos)	metro cubico (m³)	3,785 412 E-03
gal (Estados Unidos, líquidos)/día	metro por segundo al cuadrado (m/s²)	4,381 264 E-08
gal (Estados Unidos, líquidos)/min	metro cubico por segundo (m³/s)	6,309 020 E-05
gal (Estados Unidos, líquidos)/hp.h		
(SFC = consumo especifico de combustible)*	metro cubico por julio (m³/J)	1,410 089 E-09
gamma	tesla (T)	1,000 000*E-09
gauss	tesla (T)	1,000 000*E-04
g/cm ³	kilogramo por metro cubico (kg/m³)	1,000 000*E+03
gilbert	amperio (A)	7,957 747 E-01
grado	grado (angular)	9,000 000*E-01
grado	radian (rad)	1,570 796 E-02
grado (angulo)	radian (rad)	1,745 329 E-02
"F·h·pie²/Btu (Tabla internacional) (R, resistencia termica)	kelvin metro cuadrado por vatio (K·m²/W)	1,761 102 E-01
"F-h *pie²/Btu (termoquimica) (R, resistencia termica)	kelvin metro cuadrado por vatio (K·m²/W)	1,762 280 E-01
gramo	kilogramo (kg)	1,000 000*E-03
gramo-fuerza/cm²	pascal (Pa)	9,806 650*E+01
hectarea	metro cuadrado (m²)	1,000 000*E+04
hora (solar media)	segundo (s)	3,600 000 E+03
hora (siderea)	segundo (s)	3,590 170 E+03
kgf·m	newton metro (N·m)	9,806 650*E+00
kgf.s²/m (masa)	kilogramo (kg)	9,806 650*E+00
kgf/cm ²	pascal (Pa)	9,806 650*E+04
kgf/m²	pascal (Pa)	9,806 650*E+00
kgf/mm²	pascal (Pa)	9,806 650*E+06
kilocaloria (Tabla internacional)	julio (J)	4,186 800*E+03
kilocaloria (media)	julio (J)	4,190 02 E+03
kilocaloria (termoquimica)	julio (J)	4,184 000*E+03
kilocaloria (termoquímica)/min	vatio (W)	6,973 333 E+01
kilocaloria (termoquímica)/s	vatio (W)	4,184 000*E+03
kilogramo-fuerza (kgf)	newton (N)	9,806 650 E+00
kilolibra (1 000 lbf)	newton (N)	4,448 222 E+03
EHOHOIA (1 000 101)	pascal (Pa)	6,894 757 E+06
kilolibra/pulgada² (ksi)		9,806 650*E+00
kilolibra/pulgada² (ksi) kilonondio	newton (N)	
kilopondio	newton (N) metro por segundo (m/s)	
	newton (N) metro por segundo (m/s) julio (J)	2,777 778 E-01
kilopondio km/h	metro por segundo (m/s)	2,777 778 E-01 3,600 000*E+06

Para convertir	en	Multiplíquese por
lambert-pie	candela por metro cuadrado (cd/m²)	3,426 259 E+00
langley	julio por metro cuadrado (J/m²)	4,184 000*E+04
lbf/pie	newton por metro (N/m)	1,459 390 E+01
lbf/pie ²	pascal (Pa)	4,788 026 E+01
lbf/pulgada	newton por metro (N/m)	1,751 268 E+02
Ibf/pulgada ²	pascal (Pa)	6,894 757 E+03
lbf/lb[relación empuje/peso (masa)]	newton por kilogramo (N/kg)	9,806 650 E+00
lbf·pie	newton metro (N·m)	1,355 818 E+00
lbf·pie/pulgada	newton metro por metro (N·m/m)	5,337 866 E+01
lbf·pulgada	newton metro (N·m)	1,129 848 E-01
lbf·pulgada/pulgada	newton metro por metro (N·m/m)	4,448 222 E+00
lbf·s/pie ²	pascal segundo (Pa·s)	4,788 026 E+01
lb/pie·h	pascal segundo (Pa·s)	4,133 789 E-04
lb/pie·s	pascal segundo (Pa·s)	1,488 164 E+00
lb/pie ²	kilogramo por metro cuadrado (kg/m²)	4,882 428 E+00
lb/pie ³	kilogramo por metro cubico (kg/m³)	1,601 846 E+01
lb/gal (Reino Unido, liquidos)	kilogramo por metro cubico (kg/m³)	9,977 633 E+01
lb/gal (Estados Unidos, liquidos)	kilogramo por metro cubico (kg/m³)	1,198 264 E+02
lb/h	kilogramo por segundo (kg/s)	1,259 979 E-04
lb/hp·h	2 . 2	,
(SFC = consumo especifico de combustible)	kilogramo por julio (kg/J)	1,689 659 E-07
lb/pulgada³	kilogramo por metro cubico (kg/m³)	2,767 990 E+04
lb/min	kilogramo por segundo (kg/s)	7,559 873 E-03
lb/s	kilogramo por segundo (kg/s)	4,535 924 E-01
lb/yarda ³	kilogramo por metro cubico (kg/m³)	5,932 764 E-01
lb·pie² (momento de inercia)	kilogramo metro cuadrado (kg. m²)	4,214 011 E-02
lb·pulgada² (momento de inercia)	kilogramo metro cuadrado (kg·m²)	2,926 397 E-04
libra (lb avoirdupois)	kilogramo (kg)	4,535 924 E-01
libra (troy o de uso farmaceutico)	kilogramo (kg)	3,732 417 E-01
libra-fuerza (lbf)	newton (N)	4,448 222 E+00
litro	metro cubico (m³)	1,000 000*E-03
maxwell	weber (Wb)	1,000 000*E-08
mes (calendario medio)	segundo (s)	2,628 000 E+06
mho	siemens (S)	1,000 000*E+00
micron	metro (m)	1,000 000*E-06
micropulgada; millonesima de pulgada	metro (m)	2,540 000*E-08
milesima de pulgada [mil]	metro (m)	2,540 000*E-05
milesima de pulgada circular [circular mil]	metro cuadrado (m²)	5,067 075 E-10
milibar	pascal (Pa)	1,000 000*E+02
milimetro de mercurio (0°C)	pascal (Pa)	1,333 22 E+02
milla (Estados Unidos, agrimensura)	metro (m)	1,609 347 E+03
milla (internacional)	metro (m)	1,609 344*E+03
milla marina (internacional)	metro (m)	1,852 000*E+03
milla marina (Reino Unido)	metro (m)	1,853 184*E+03
milla marina (Estados Unidos)	metro (m)	1,852 000*E+03
milla (terrestre)	metro (m)	1,609 3 E+03
milla² (internacional)	metro cuadrado (m²)	2,589 988 E+06
,	metro cuadrado (m²)	2,589 998 E+06
milla² (Estados Unidos, agrimensura)		-1
milla² (Estados Unidos, agrimensura) milla/h (internacional)	metro por segundo (m/s)	4,470 400*E-01
	metro por segundo (m/s) kilometro por hora (km/h)	4,470 400*E-01 1,609 344*E+00

Para convertir	en	Multipliquese por
milla/s (internacional)	metro por segundo (m/s)	1,609 344*E+03
minuto (angulo)	radian (rad)	2,908 882 E-04
minuto (solar medio)	segundo (s)	6,000 000 E+01
minuto (sidereo)	segundo (s)	5,983 617 E+01
nudo (internacional)	metro por segundo (m/s)	5,144 444 E-01
oersted	amperio por metro (A/m)	7,957 747 E+01
ohmio centimetro	ohmio metro (Ω·m)	1,000 000*E-02
ohmio circular-mil por pie	ohmio milimetro cuadrado por metro (Ω·mm²/m)	1,662 426 E-03
onza (avoirdupois)	kilogramo (kg)	2,834 952 E-02
onza (Estados Unidos, liquidos)	metro cubico (m³)	2,957 353 E-05
onza (Reino Unido, liquidos)	metro cubico (m³)	2,841 307 E-05
onza (troy o de uso farmaceutico)	kilogramo (kg)	3,110 348 E-02
onza-fuerza	newton (N)	2,780 139 E-01
onza-fuerza, pulgada	newton metro (N·m)	7,061 552 E-03
onza liquida (Estados Unidos)	metro cubico (m³)	2,957 353 E-05
oz (avoirdupois)/gal (Reino Unido, liquidos)	kilogramo por metro cubico (kg/m³)	6,236 021 E+00
oz (avoirdupois)/gal (Estados Unidos, liquidos)	kilogramo por metro cubico (kg/m³)	7,489 152 E+00
oz (avoirdupois)/pulgada³	kilogramo por metro cubico (kg/m³)	1,729 994 E+03
oz (avoirdupois)/pie²	kilogramo por metro cuadrado (kg/m²)	3,051 517 E-01
oz (avoirdupois)/yarda²	kilogramo por metro cuadrado (kg/m²)	3,390 575 E-02
parsec	metro (m)	3,085 678 E+16
perm (O•⟨C)	kilogramo por pascal segundo metro cuadrado (kg/Pa·§·m²)	5,721 35 E-11
perm (23°C)	kilogramo por pascal segundo metro cuadrado (kg/Pa·s.m²)	5,745 25 E-11
perm.pulgada (0°C)	kilogramo por pascal segundo metro (kg/Pa·s·m)	1,453 22 E-12
perm.pulgada (23°C)	kilogramo por pascal segundo metro (kg/Pa·≅·m)	1,459 29 E-12
pie	metro (m)	3,048 000*E-01
pie (Estados Unidos, agrimensura)	metro (m)	3,048 006 E-01
pie de agua (39,2°F)	pascal (Pa)	2,988 98 E+03
pie ²	metro cuadrado (m²)	9,290 304*E-02
pie ² /h (difusion termica)	metro cuadrado por segundo (m²/s)	2,580 640*E-05
pie ² /s	metro cuadrado por segundo (m²/s)	9,290 304*E-02
pie ³ (volumen; modulo de seccion)	metro cubico (m³)	2,831 685 E-02
pie ³ /min	metro cubico por segundo (m³/s)	4,719 474 E-04
pie ³ /s	metro cubico por segundo (m³/s)	2,831 685 E-02
pie4 (momento'de seccion)	metro a la cuarta potencia (m ⁴)	8,630 975 E-03
pie/h	metro por segundo (m/s)	8,466 667 E-05
pie/min	metro por segundo (m/s)	5,080 000*E-03
pie/s	metro por segundo (m/s)	3,048 000*E-01
pie/s ²	metro por segundo al cuadrado (m/s²)	3,048 000*E-01
pie. lbf	julio (J)	1,355 818 E+00
pie. lbf/h	vatio (W)	3,766 161 E-04
pie. lbf/min	vatio (W)	2,259 697 E-02
pie. lbf/s	vatio (W)	1,355 818 E+00
pie · poundal	julio (J)	4,214 011 E-02
pinta (Estados Unidos, aridos)	metro cubico (m³)	5,506 105 E-04

Para convertir	en	Multipliquese po
pinta (Estados Unidos, liquidos)	metro cubico (m³)	4,731 765 E-04
poise (viscosidad absoluta)	pascal segundo (Pa.s)	1,000 000*E-01
polo unidad	weber (Wb)	1,256 637 E-07
poundal	newton (N)	1,382 550 E-01
poundal/pie ²	pascal (Pa)	1,488 164 E+00
poundal.s/pie ²	pascal segundo (Pa.s)	1,488 164 E+00
pulgada	metro (m)	2,540 000*E-02
pulgada de agua (39,2°F)	pascal (Pa)	2,490 82 E+02
pulgada de agua (60•∢F)	pascal (Pa)	2,488 4 E+02
pulgada de mercurio (32• <f)< td=""><td>pascal (Pa)</td><td>3,386 38 E+03</td></f)<>	pascal (Pa)	3,386 38 E+03
pulgada de mercurio (60•‹F)	pascal (Pa)	3,376 85 E+03
pulgada ²	metro cuadrado (m²)	6,451 600*E-04
pulgada³ (volumen; modulo de seccion)	metro cubico (m ³)	1,638 706 E-05
pulgada³/min	metro cubico por segundo (m³/s)	2,731 177 E-07
pulgada ⁴ (momento de seccion)	metro a la cuarta potencia (m4)	4,162 314 E-07
pulgada/s	metro por segundo (m/s)	2,540 000*E-02
pulgada/s²	metro por segundo al cuadrado (m/s²)	2,540 000*E-02
quintal (corto)	kilogramo (kg)	4,535 924 E+01
quintal (largo)	kilogramo (kg)	5,080 235 E+01
rad (dosis de radiacion absorbida)	gray (Gy)	1,000 000*E - 02
rem	sievert (Sv)	1,000 000 E - 02
rhe	1 por pascal segundo (1/Pa·s)	1,000 000 E = 02
roentgen	culombio por kilogramo (C/kg)	2,58 E-04
segundo (angulo)	radian (rad)	4,848 137 E-06
segundo (sidereo)	segundo (s)	9,972 696 E-01
slug	kilogramo (kg)	1,459 390 E+01
slug/pie·s	pascal segundo (Pa·s)	4,788 026 E+01
slug/pie ³	kilogramo por metro cubico (kg/m³)	5,153 788 E+02
stilb	candela por metro cuadrado (cd/m²)	1,000 000*E+04
stokes (viscosidad cinematica)	metro cuadrado por segundo (m²/s)	1,000 000*E-04
termia	julio (J)	1,055 056 E+08
tonelada	kilogramo (kg)	1,000 000*E+03
tonelada (assay)	kilogramo (kg)	2,916 667 E-02
tonelada (corta, 2 000 lb)	kilogramo (kg)	9,071 847 E+02
tonelada (equivalente nuclear de TNT)	julio (J)	4,184 E+09
tonelada (larga, 2 240 lb)	kilogramo (kg)	
tonelada (natrica)	kilogramo (kg)	1,016 047 E+03 1,000 000*E+03
tonelada (metrica)	vatio (W)	3,516 800 E+03
tonelada (de registro)	metro cubico (m3)	
tonelada (de registro) tonelada (larga)/yarda³	kilogramo por metro cubico (kg/m³)	2,831 685 E+00
tonelada (corta)/h		1,328 939 E+03
tonelada (corta)/n tonelada-fuerza (2 000 lbf)	kilogramo por segundo (kg/s) newton (N)	2,519 958 E-01
tonelada-ruerza (2 000 181) torr (mm Hg, 0°C)	pascal (Pa)	8,896 444 E+03 1,333 22 E+02
unidad termica britanica (Btu) (Tabla		
internacional)	julio (J)	1,055 056 E+03
unidad termica britanica (Btu) (media)	julio (J)	1,055 87 E+03
	J (2)	2,000 01 2700
unidad termica britanica (Btu) (termoquimica)	julio (J)	1,054 350 E+03

Para convertir	en	Multiplíquese poi
unidad termica britanica (Btu) (59•∢F)	julio (J)	1,054 80 E + 03
unidad termica britanica (Btu) (60°F)	julio (Ĵ)	1,054 68 E + 03
W·h	julio (J)	3,600 000*E + 03
W·s	julio (J)	1,000 000*E + 00
W/cm ²	vatio por metro cuadrado (W/m²)	1,000 000*E + 04
W/pulgada ²	vatio por metro cuadrado (W/m²)	1,550 003 E+03
yarda	metro (m)	9,144 000*E-01
yarda ²	metro cuadrado (m²)	8,361 274 E-01
yarda ³	metro cubico (m³)	7,645 549 E-01
varda³/min	metro cubico por segundo (m3/s)	1,274 258 E - 02

Tabla C-2. Formulas de conversion de temperatura

Para convertir	en	Utilicese la formula
Temperatura Celsius (t°C)	Temperatura Kelvin (t _K)	t _K = t° _C + 273,15
Temperatura Fahrenheit (t°F)	Temperatura Celsius (t°C)	$t_{^{\circ}C} = (t_{^{\circ}F} - 32)/1,8$
Temperatura Fahrenheit (t°F)	Temperatura Kelvin (t_K)	$t_K = (t_{F} + 459,67)/1,8$
Temperatura Kelvin (t _K)	Temperatura Celsius (t°C)	$t_{^{\circ}C} = t_{K} - 273,15$
Temperatura Rankine (to _R)	Temperatura Kelvin (t_K)	$t_K = t \circ_R / 1.8$

APENDICE D

TIEMPO UNIVERSAL COORDINADO

- 1. El Tiempo Universal Coordinado (UTC), ha sustituído la Hora Media de Greenwich (GMT) como norma internacional aceptada para fijar la hora. Es la base en muchos Estados para fijar la hora civil y se utiliza también en todo el mundo para las radiodifusiones de señales horarias empleadas en la aviación. Organismos como la Conferencia General sobre Pesas y Medidas (CGPM), el Comité Consultivo Internacional de Radiocomunicaciones (CCIR) y la Conferencia Administrativa Mundial de Radiocomunicaciones (WARC) recomiendan el empleo del UTC.
- 2. Toda medición del tiempo se basa en la duración de la rotación aparente del sol. Sin embargo, esta es una cantidad variable que depende, entre otras cosas, de donde se haga la medición en la tierra. El valor medio de esa duración, basado en las mediciones hechas en varios lugares de la tierra, se conoce como Tiempo Universal. Existe una escala de tiempo diferente, basada en la definición del segundo y conocida con el nombre de Tiempo Atómico Internacional (TAI). La combinación de estas dos escalas da como resultado el Tiempo Universal Coordinado (UTC), el cual consiste en el TAI ajustado en la medida necesaria mediante segundos intercalados hasta obtener una buena aproximación (siempre inferior a 0,5 segundos) al Tiempo Universal."

APENDICE E

PRESENTACIÓN DE LA FECHA Y LA HORA EN FORMA EXCLUSIVAMENTE NUMÉRICA

5. Introducción

En las Normas 2014 y 3307 de la Organización Internacional de Normalización (ISO), se describen en detalle los procedimientos para escribir la fecha y la hora en forma exclusivamente numérica y, en adelante, la OACI empleará dichos procedimientos en sus documentos cuando lo considere apropiado.

6. Presentación de la fecha

Cuando las fechas se presentan en forma exclusivamente numérica, el orden a seguir será año-mesdía.

Los elementos que constituyen la fecha deberán ser: — cuatro cifras para representar el año; no obstante, pueden omitirse las cifras que corresponden al "siglo" cuando no haya posibilidad de confusión.

Cuando se considere necesario separar los elementos para facilitar la comprensión visual, la única separación que se debe emplear es un espacio o un guión. Por ejemplo, el 25 de agosto de 1983 puede escribirse de la siguiente manera:

19830825 ó 830825 ó 1983-08-25 ó 83-08-25 ó 1983 08 25 ó 83 08 25

La secuencia indicada (Correspondiente a las secuencia ISO) se debe utilizar solamente cuando se emplee una presentación totalmente numérica. Las presentaciones que emplean una combinación de cifras y palabras se pueden seguir utilizando si resulta necesario (por ejemplo, 25 de agosto de 1983).

7. Presentación de la hora

- 3.1 Cuando la hora del día se haya de escribir en forma exclusivamente numérica, la secuencia debe ser la de horas-minutos-segundos.
- 3.2 Dentro del sistema horario de 24 horas, la hora debe representarse por medio de dos cifras que se extienden del 00 al 23, y éstas pueden ir seguidas de, o bien una fracción decimal de la hora o bien el número de minutos y segundos. Cuando la presentación de la hora se haga mediante un número decimal, se debe emplear un elemento separador decimal normal, seguido del número de cifras necesarias para facilitar la exactitud requerida.
- 3.3 De igual modo, los minutos deben representarse por medio de dos cifras del 00 al 59, seguidas de una fracción decimal de minuto o el número de segundos.
- 3.4 Los segundos deben representarse por medio de dos cifras del 00 al 59, seguidos, de ser necesario, de una fracción decimal de segundo.
- 3.5 Cuando sea necesario facilitar la comprensión visual deberían emplearse dos puntos para separar las horas de los minutos y los minutos de los segundos. Por ejemplo, las 3 horas 20 minutos y 18 segundos de la tarde podrían expresarse de la siguiente forma:

152018 ó 15:20:18 en horas, minutos y segundos *ó* 1520.3 ó 15:20.3 en horas, minutos y fracción decimal de un minuto 15.338 en horas y fracción decimal de una hora.

8. Grupos de fecha y hora combinados

Esta clase de presentación ofrece un método uniforme de escribir la fecha y la hora juntos, cuando esto sea necesario. En tales casos, el orden de los elementos es el de año-mes-día- horas-minutos-segundos. No siempre es necesario emplear todos los elementos. Por ejemplo, típicamente se podrían usar solamente los elementos día-horas- minutos.

NOTA: Apéndice Adicionado mediante el Artículo PRIMERO de la Resolución N°. 01259 de Marzo 13 de 2012. Publicada en el Diario Oficial N° 48.389 de Marzo 31 de 2012.